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Abstract—Chiral ketones 1 and 2 bearing 1-aza-7-oxabicyclo[3.5.0]decane skeleton and their C2-symmetric analogue 3 were readily
prepared and evaluated as a chiral dioxirane precursor for asymmetric epoxidation of olefins with Oxone®. The ketone 2, bearing
a diphenyl steric wall, was not effective and gave quite poor selectivity. Good selectivity up to 83% ee was obtained using 1 and
3, which suggested that Coulomb repulsion by carbonyl and ether oxygen atoms are operative as an electronic wall rather than
a steric wall. © 2002 Elsevier Science Ltd. All rights reserved.

As part of our studies directed toward the development
of external chiral ligands that effectively control a
variety type of catalytic asymmetric reactions,1,2 we
designed and evaluated several types of chiral ketones
for precursors to chiral dioxiranes that mediate asym-
metric epoxidation of olefins with Oxone®.3 Reported
and our own stereochemical control methodology relied
on a steric wall concept operative through interference
of sterically unfavorable approach of an olefin to a
dioxirane.4 Our chiral ketones were characteristic by
1,2-diphenylethane-1,2-diamine5 or binaphthyl as a chi-
ral backbone and arylsulfonamide moiety as a steric
wall as well as an electron-withdrawing group for elec-
trophilic activation of a ketone for the formation of a
dioxirane.6 However, enantioselectivity was unexpect-
edly poor, at most 30% ee for epoxidation of stilbene,
even though the sense of enantiofacial differentiation
was the same as we predicted.7 The second generation
of our asymmetric epoxidation was focused on the use
of chiral heterocycles as a backbone of the ketone. New
chiral ketone 1 has a 1-aza-7-oxabicyclo[3.5.0]decane
skeleton and its dioxirane takes a MM2-calculated con-
formation A (Figs. 1 and 2). Diphenyl version 2 was
firstly expected to behave better from the viewpoint of
a steric wall because both of left-up and right-bottom
sides were blocked by a pyrrolidone and a phenyl rings
(B), respectively, giving superior stereoselection.

New ketones 1 and 2 were readily prepared in two steps
through annelation8 of the heterocycles 7 and 89 with

3-chloro-2-chloromethylpropene to 4 and 5 and follow-
ing oxidative degradation of the exo-methylene in 99
and 93% overall yields. Epoxidation of trans-stilbene
10a with Oxone® in the presence of a stoichiometric
amount of 1 in acetonitrile–dimethoxymethane
(DMM)–water (2:1:2) afforded (S,S)-stilbene oxide 11a
in 60% ee, whereas the reaction with 2 gave (R,R)-11a

Figure 1. Chiral ketones and precursors.

Figure 2. Chiral dioxiranes derived from 1–3. For clarifica-
tion, protons are omitted except protons at the chiral center
and C is presented as an antipode.
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Table 1. Asymmetric epoxidation of olefins with ketone–
Oxone®

hexene 10f using 3 in a mixture of 1,4-dioxane and
water (3:2) at −8°C to give 11f in 82% ee (run 15).

It is noteworthy that the catalytic epoxidation of 10f
with substoichiometric amount of 1 and 3 in MeCN–
DMM–water gave 11f in a reasonably high enantiose-
lectivity. The reaction with 40 mol% of 1 and 3 at rt for
2 h gave quantitatively 11f in 71 and 76% ee, respec-
tively. It was remarkable to find that the reaction with
20 mol% of 3 at −12°C for 4 h gave 11f in 83% ee and
quantitative yield.
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